
INFORMS JOURNAL ON OPTIMIZATION
Vol. 2, No. 3, Summer 2020, pp. 209–228

http://pubsonline.informs.org/journal/ijoo ISSN 2575-1484 (print), ISSN 2575-1492 (online)

Integer Programming on the Junction Tree Polytope for
Influence Diagrams
Axel Parmentier,a Victor Cohen,a Vincent Leclère,a Guillaume Obozinski,b Joseph Salmonc

aCERMICS, Ecole des Ponts, 77455 Marne-la-Vallée, France; b Swiss Data Science Center, EPFL and ETH Zürich, 8006 Zürich, Switzerland;
c IMAG, Université de Montpellier, CNRS, 34090 Montpellier, France
Contact: axel.parmentier@enpc.fr, https://orcid.org/0000-0003-1762-4947 (AP); victor.cohen@enpc.fr,

https://orcid.org/0000-0002-2616-8800 (VC); vincent.leclere@enpc.fr, https://orcid.org/0000-0002-5757-6655 (VL);
guillaume.obozinski@epfl.ch, https://orcid.org/0000-0002-7629-7571 (GO); joseph.salmon@umontpellier.fr,

https://orcid.org/0000-0002-3181-0634 (JS)

Received: July 30, 2019
Revised: January 15, 2020; April 22, 2020
Accepted: May 3, 2020
Published Online in Articles in Advance:
July 24, 2020

https://doi.org/10.1287/ijoo.2019.0036

Copyright: © 2020 INFORMS

Abstract. Influence diagrams (ID) and limited memory influence diagrams (LIMID) are
flexible tools to represent discrete stochastic optimization problems, with the Markov
decision process (MDP) and partially observable MDP as standard examples. More pre-
cisely, given random variables considered as vertices of an acyclic digraph, a probabilistic
graphical model defines a joint distribution via the conditional distributions of vertices
given their parents. In an ID, the random variables are represented by a probabilistic
graphical model whose vertices are partitioned into three types: chance, decision, and
utility vertices. The user chooses the distribution of the decision vertices conditionally to
their parents in order to maximize the expected utility. Leveraging the notion of rooted
junction tree, we present a mixed integer linear formulation for solving an ID, as well as
valid inequalities, which lead to a computationally efficient algorithm. We also show that
the linear relaxation yields an optimal integer solution for instances that can be solved by
the “single policy update,” the default algorithm for addressing IDs.

Funding: This work was partially funded by the Operations Research and Machine Learning between
Air France and Ecole des Ponts.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoo.2019.0036.

Keywords: influence diagrams • partially observed Markov decision processes • probabilistic graphical models • linear programming

1. Introduction
In this paper we seek to address stochastic optimization problems with structured information and discrete
decision variables via mixed integer linear reformulations. We start by recalling the framework of influence
diagrams (IDs; more details can be found in Koller and Friedman 2009, chapter 23) and present the classical
linear formulation for some special cases.

1.1. The Framework of Parameterized ID
Let G � (V,E) be an acyclic directed graph, and for each vertex v in V, let Xv be a random variable taking a
value in a finite state space -v. For any C ⊂ V, let XC denote (Xv)v∈C, and let -C be the Cartesian product
-C � ∏

v∈C -v. We say that the distribution of the random vector XV factorizes as a directed graphical model on G
if, for all xV ∈ -V , we have

P XV � xV() � ∏
v∈V

pv|pa(v) xv|xpa(v)
()

, (1)

where pa(v) is the set of parents of v, that is, the set of vertices u such that (u, v) belongs to E, and
pv|pa(v)(xv|xpa(v)) � P(Xv � xv|Xpa(v) � xpa(v)). Further, given an arbitrary collection of conditional distributions
{pv|pa(v)}v∈V , Equation (1) uniquely defines a probability distribution on -V .

Let (Va,Vc,Vr) be a partition of V, where Vc is the set of chance vertices, Va is the set of decision vertices, and
Vr is the set of utility vertices (the ones with no descendants). For ease of notation we denote Vs � Vc ∪ Vr.
Letters a, r, and s, respectively, stand for action, reward, and stochastic in Va, Vr, and Vs. We say that G �
(Vs,Va,E) is an ID. Consider a set of conditional distributions p � {pv|pa(v)}v∈Vc∪Vr and a collection of reward
functions r � {rv}v∈Vr with rv : -v → R. Then we call (G,-V , p, r) a parameterized influence diagram (PID).1 We will
sometimes refer to the parameters (-V , p, r) by ρ for conciseness.

209

http://pubsonline.informs.org/journal/ijoo
mailto:axel.parmentier@enpc.fr
https://orcid.org/0000-0003-1762-4947
https://orcid.org/0000-0003-1762-4947
mailto:victor.cohen@enpc.fr
https://orcid.org/0000-0002-2616-8800
https://orcid.org/0000-0002-2616-8800
mailto:vincent.leclere@enpc.fr
https://orcid.org/0000-0002-5757-6655
https://orcid.org/0000-0002-5757-6655
mailto:guillaume.obozinski@epfl.ch
https://orcid.org/0000-0002-7629-7571
https://orcid.org/0000-0002-7629-7571
mailto:joseph.salmon@umontpellier.fr
https://orcid.org/0000-0002-3181-0634
https://orcid.org/0000-0002-3181-0634
https://doi.org/10.1287/ijoo.2019.0036
https://doi.org/10.1287/ijoo.2019.0036

Let Δv denote the set of conditional distributions δv|pa(v) on -v given -pa(v). Given the set of conditional
distributions p, a strategy δ in Δ � ∏

v∈Va Δv uniquely defines a distribution Pδ on -V through

Pδ XV � xV() � ∏
v∈Vs

pv|pa(v) xv|xpa(v)
() ∏

v∈Va

δv|pa(v) xv|xpa(v)
()

. (2)

Let Eδ denote the corresponding expectation. The maximum expected utility (MEU) problem associated to the
PID (G,-V , p, r) is the maximization problem

max
δ∈Δ

Eδ

∑
v∈Vr

rv Xv()
()

. (3)

A strategy δ ∈ Δd ⊂ Δ is deterministic if, for every v ∈ Va and any xv, xpa(v) ∈ -v × -pa(v), δv|pa(v)(xv|xpa(v)) is a Dirac
measure. It is well known that there always exists an optimal solution to MEU (3) that is deterministic (see,
e.g., Liu 2014, lemma C.1 for a proof).

Remark 1. A common practice in the literature is to define utility vertices v ∈ Vr that are deterministic functions
f (xpa(v)) of their parents. This case can of course be modeled in our setting: For each v in Vr, it suffices to define state
spaces -v � -pa(v), conditional probabilities pv|pa(v)(xv|xpa(v)) to be equal to 1 if xv � xpa(v) and 0 otherwise, and
reward functions r(xv) :� f (xv).
Remark 2. In an ID, one says that there is perfect recall of previous actions, when, for a given topological order, the
sets of parents of a given action are all the actions that appear before it in the topological order and their parents. In
the absence of perfect recall, many authors have used the expression limited memory influence diagram (LIMID) to
characterize the corresponding ID (e.g., Lauritzen and Nilsson 2001). In this paper, we consider the general case of
LIMIDs but we refer to them as IDs throughout the paper, following the convention adopted in Koller and
Friedman (2009, chapter 23).

We conclude this section with some classical examples of IDs, shown in Figure 1.

Example 1. Consider a maintenance problem in which at time t a machine is in state st. The action at taken by the
decision maker according to the current state is typically a binary decision which is to either perform maintenance
on it (which is costly) or not (which increases the probability of failure). The problem is considered over a finite
horizonwithmultiple maintenance interventions possible. State and decision together lead to a new (random) state
st+1, and the triple (st, at, st+1) induces a reward rt. This is an example of a Markov decision process (MDP) which is
probably the simplest type of ID, represented in Figure 1(a).

In practice, the actual state st of the machine is often not known, and we have instead an observation ot that
only carries partial information about the state, which leads to a more complex ID known as a partially observed
Markov decision process (POMDP). Taking decisions based on all past observations and decisions (which is the
perfect recall case) would lead to a better MEU, but requires working with policies living in spaces of ex-
ponentially large dimension and thus leads to intractable MEU problems (Papadimitriou and Tsitsiklis 1987).
To reduce the complexity of the MEU problem, we follow Lauritzen and Nilsson (2001) and restrict ourselves
to memoryless policies: as illustrated in Figure 1(b), the decision at is taken based on observation ot.

Figure 1. ID Examples

Note. We represent chance vertices (Vs) in circles, decision vertices (Va) in rectangles, and utility vertices (Vr) in diamonds.

Parmentier et al.: Integer Programming for Influence Diagrams
210 INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS

Example 2. Figure 2(a) depicts an ID modeling the media investment strategy of a political party for the next
elections. The national committee starts in an by deciding how much to invest into national media coverage and
which budget it gives to regional committees. Based on the national popularity rating vn after the interventions on
national media, a regional committee i decides which fraction ari of their funds they allocate to regional media and
local committees. Based on regional popularity rating vri after the interventions on regional media, each local
committee j decides how much to invest in local meetings and local media a�j. The objective maximized is the total
number of local elections r�j won.

Example 3. Consider two chess players: Bob and Alice. They play chess, and for each game they bet a symbolic
coin. However, they can refuse to play. Suppose that Alice wants to play chess every day.2 On day t, she has a
current confidence level st. On the day of the game, her current mental fitness is denoted ot. When Bob meets with
Alice, he makes the decision to play depending on her demeanor, denoted ut. Then Bob can accept or decline the
challenge, and his decision is denoted at. Let vt denote the winner (getting a reward rt). If Bob declines the challenge,
there is no winner and no reward. Then, Alice’s next confidence level is affected by the result of the game and her
previous confidence level. This stochastic decision problem can be modeled by an ID as shown in Figure 2(b).

1.2. Solving MDP Through Linear Programs
We review here a well-known linear programming formulation for MDPs (see d’Epenoux 1963), which is a
special case of the mixed integer linear program (MILP) formulation that we will introduce subsequently in the
paper. We denote by p(s′|s, a) the probability of transitioning from state s to state s′ if action a is taken, and we
denote by r(s, a, s′) the reward associated to this transition. For t ∈ {1, . . . ,T}, let μt

s represent the probability of
being in state s at time t, let μt

sa represent the probability of being in state s and taking action a at time t, and let
μt
sas′ represent the probability of being in state s and taking action a at time t, while transiting to state s′ at time t + 1.

This leads to the linear program

max
µ

∑T−1
t�1

∑
s,a,s′

μt
sas′ r s, a, s

′() (4a)

s.t. μt
sas′ � p s′|s, a()μt

sa, ∀t, s, s′, (4b)
μ0
s0 � 1, (4c)∑

s,a
μt
sas′ �μt+1

s′ , ∀t,s′, ∑
s′

μt
sas′ �μt

sa, ∀t,s,a, and
∑
a
μt
sa �μt

s, ∀t,s, (4d)∑
s
μt
s � 1, ∀t, (4e)

μt
s, μ

t
sa, μ

t
sas′ ∈ 0, 1[], ∀t, a, s, s′, (4f)

where the objective (4a) is simply the expected reward, the constraints (4b) represent the state dynamics, the
constraints (4c) set the initial state of the system to s0, and the constraints (4d)–(4f) ensure that μ represents the
marginals laws of a joint distribution.

1.3. Literature
IDs were introduced by Howard and Matheson (1984) (see also Howard and Matheson 2005) to model
stochastic optimization problems using a probabilistic graphical model framework. Originally, the decision
makers were assumed to have perfect recall (Shachter 1986, Shenoy 1992, Jensen et al. 1994) of the past actions.

Figure 2. IDs of Examples 2 and 3

Parmentier et al.: Integer Programming for Influence Diagrams
INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS 211

Lauritzen and Nilsson (2001) relaxed this assumption and provided a simple (coordinate descent) algorithm
to find a good strategy: the single policy update (SPU) algorithm. These authors used the name limited memory
IDs when relaxing the perfect recall assumption, but we follow the convention of Koller and Friedman (2009)
who still call them IDs. The same authors also introduced the notion of soluble ID as a sufficient condition for
SPU to converge to an optimal solution. This notion has been generalized by Koller and Milch (2003) to
obtain a necessary and sufficient condition. In general, SPU only finds a locally optimal strategy and requires
an exact inference, so that it is therefore limited by the treewidth (Chandrasekaran et al. 2008). More recently,
Mauá and de Campos (2011) and Mauá and Cozman (2016) have introduced a new algorithm, multiple policy
update, which has both an exact and a heuristic version and relies on a concept of dominance to discard partial
solutions. It can be interpreted as a generalization of SPU where several decisions are considered simulta-
neously. Later on, Khaled et al. (2013) proposed a similar approach, in the spirit of branch and bound, whereas
Liu (2014) introduced heuristics based on approximate variational inference. Usually, inference computations
in IDs are done within valuation algebra on the pair potential-utility (Jensen et al. 1994, Dechter 2013). Lee
et al. (2018) propose an inference algorithm providing upper bounds on the MEU which uses valuation
algebras for IDs (Dechter 2013). We choose to use the marginal polytope for inference computations, because it is
useful for mathematical programming approaches (Wainwright and Jordan 2008, Sontag et al. 2011).

Finally, the problem of solving an ID can be polynomially transformed into a maximum a posteriori (MAP)
problem and, hence, can be solved using popular MAP solvers such as toulbar2 (Hurley et al. 2016). For further
details about the transformation, see Cano et al. (1994), Antonucci and Zaffalon (2008) and Maua (2016).

Finding an optimal strategy for an ID has been shown to be NP hard even when restricted to IDs of
treewidth no greater than two or to trees with binary variables (Mauá et al. 2012a, 2013). Note that even
obtaining an approximate solution is also NP hard (Mauá et al. 2012a).

Beyond the classical linear programming formulation for MDPs, mathematical programming formulations
have been proposed for some special cases of IDs, including decomposable or weakly coupled MDPs
(Bertsimas and Niño-Mora 2000, De Farias and Van Roy 2003, Hawkins 2003, Adelman and Mersereau 2008,
Bertsimas and Mišić 2016) and POMDP with perfect recall and short horizon (Aras and Dutech 2010). Among
these formulations, the one of Bertsimas and Mišić (2016) is the closest to ours, since it also relies on variables
that correspond to moments or distributions. The variables of the other formulations correspond to time
averages (Bertsimas and Niño-Mora 2000) or value functions (De Farias and Van Roy 2003, Hawkins 2003,
Adelman and Mersereau 2008), which makes these formulations harder to generalize to IDs.

Credal networks are generalizations of probabilistic graphical models where the parameters of the model are
not known exactly. MILP formulations for credal networks that could be applied to IDs have been introduced by de
Campos and Cozman (2007) and de Campos and Ji (2012). However, the number of variables they require is
exponential in the pathwidth, which can be arbitrarily larger than the width of the tree we are using (this
follows from Scheffler (1990, theorem 4)), and the linear relaxation of their MILP is not as good as the one of
the MILP we propose and does not yield an integer solution on soluble IDs. Our approach can naturally be
extended to credal networks.

Finally, Examples 1, 2, and 3 are sequential decisions problems in stochastic optimization. Many different
solution approaches have been proposed under different names in different academic communities. Although
describing these approaches is beyond the scope of this paper, we refer the interested reader to the tutorial of
Powell (2014). As we have already mentioned in Example 1, we consider only memoryless policies for POMDP
(Littman 1994a). Li et al. (2011) emphasize the benefits of using memoryless policies in practice. In the lit-
erature, POMDPs are generally considered with the perfect recall assumption. Exact approaches to that case
generally transform a POMDP into an equivalent MDP on the belief state space (Eckles 1968) and solve that
MDP by dynamic programming (Smallwood and Sondik 1973, Littman 1994b). However, these exact algo-
rithms become quickly intractable when the size of the spaces grows, and many heuristics have been proposed
(Ross et al. 2008, Shani et al. 2013).

1.4. Contributions
The contributions of the paper are as follows.

• We introduce a nonlinear program (NLP) and a MILP for the MEU problem on IDs.
• These mathematical programs rely on a variant of the concept of a strong junction tree which we introduce

and call a rooted junction tree (RJT). We provide algorithms to build RJTs that lead to “good” mathematical
programs for IDs.

• We introduce a particular form of valid cuts for the obtained MILP. These valid cuts leverage conditional
independence properties in the ID. We show that our cuts are the strongest ones in a certain sense. We believe

Parmentier et al.: Integer Programming for Influence Diagrams
212 INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS

that this idea of leveraging conditional independence to obtain valid cuts is fairly general and could be
extended to other contexts.

• We establish a link between the linear relaxation of our MILP and the concept of soluble relaxation
previously introduced in the literature on IDs. In fact, our relaxation provides a better bound than those
relaxations.

• We provide two new characterizations of soluble IDs: first, as the only IDs that can be solved to op-
timality using the linear relaxation of our MILP; and second, and more importantly, as the IDs for which there
exists a junction tree such that the set of collections of moments of distributions that are induced by the
different policies is convex.

• We illustrate our mathematical programs and their properties on some simple numerical examples.
Our approach obviously has limitations. Indeed, any exact method to solve Problem (3) must compute

the exact value of Eδ(∑v∈Vr rv(Xv)) when it evaluates a strategy δ. Since exact inference is exponential in the
treewidth, this type of method is limited in practice to graphs with moderate treewidth. Our approach
to solving (3) relies on the RJTs that we introduce and is therefore practically limited to IDs with moderate
rooted treewidth. This is an additional limitation since the rooted treewidth can be significantly larger than
the usual treewidth. Actually, on pathological cases such as the one in Figure 11 at the end of Appendix A, the
rooted treewidth can be even worse than the pathwidth (Robertson and Seymour 1983). We however expect our
method to work well on two important class of applications, for which the rooted treewidth is of the same
order of magnitude as the treewidth: temporal models like those considered in Examples 1 and 3, and strategic
decision problems with several decision levels in large organizations as in Example 2. The code to perform
numerical experiments is available here.3

1.5. Organization of the Paper
In Section 2, we recall some definitions for graphical models, which are used to extend the notion of junction
tree to RJT in Section 3. With these tools, Section 4 introduces a bilinear formulation that can be rewritten as a
MILP formulation to the MEU Problem (3). In Section 5 we propose efficient valid cuts for the MILP for-
mulation and interpret them in terms of graph relaxations. Section 6 studies the polynomial case of soluble
IDs, showing that the IDs that can be solved to optimality by SPU can be solved with (continuous) linear
programming using our formulation. Finally, Section 7 summarizes our numerical experiments.

2. Background on Probabilistic Graphical Models
In this section, we recall notation and tools used in the following sections to refomulate the MEU Problem (3).
Those are well-known results from probabilistic graphical model theory that do not yet pertain to IDs.

2.1. Graph Notation
This section introduces our notations for graphs, which are for the most part the ones commonly used in the
combinatorial optimization community (Schrijver 2003). A directed graph G is a pair (V,E) where V is the set
of vertices and E ⊆ V2 is the set of arcs. We write u → v when (u, v) ∈ E. Let [k] :� {1, . . . , k}. A path is a
sequence of vertices v1, . . . , vk such that vi → vi+1 for any i ∈ [k − 1]. A path between two vertices u and v is

called a u-v path. We write u
G

−−< υ to denote the existence of a u-v path in G, or simply u −−< υ when G is clear
from context. We write u
 v if there is an arc u → v or v → u. A trail is a sequence of vertices v1, . . . , vk such
that vi
 vi+1, for all i ∈ [k − 1]. A parent (resp., child) of a vertex v is a vertex u such that (u, v) (resp., (v,u))
belongs to E; we denote by pa(v) the set of parents vertices (resp., ch(v) the set of children vertices). The family
of v, denoted by fa(v), is the set {v} ∪ pa(v). A vertex u is an ancestor (resp., a descendant) of v if there exists a u-v
path (resp., a v-u path). We denote, respectively, by anc(v) and des(v) the set of ancestors and descendants of v.
Finally, let anc(v) � {v} ∪ anc(v) and des(v) � {v} ∪ des(v). For a set of vertices C, the parent set of C, again
denoted by pa(C), is the set of vertices u that are parents of a vertex v ∈ C. We define similarly fa(C), ch(C),
anc(C), anc(C), des(C), and des(C). Note that we sometimes indicate with a subscript the graph according to
which the parents, children, and so on are taken. For instance, paG(v) denotes the parents of v in G.

A cycle is a path v1, . . . , vk such that v1 � vk. A graph is connected if there exists a path between any pair of
vertices. An acyclic graph is a graph which has no cycle. An undirected graph is a tree if it is connected and
acyclic. A directed graph is a directed tree if its underlying undirected graph is a tree. A rooted tree is a directed
tree such that all vertices have a common ancestor referred to as the root of the tree.4 In a rooted tree, all
vertices but the root have exactly one parent.

Parmentier et al.: Integer Programming for Influence Diagrams
INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS 213

2.2. Directed Graphical Model
In this paper, given three random variables X, Y, and Z, the notation X⊥⊥Y|Z stands for “X is independent
from Y given Z.”

A well-known sufficient condition for a distribution to factorize as a probabilistic graphical model is that
each vertex is independent from its nondescendants given its parents.

Proposition 1 (Koller and Friedman 2009, theorem 3.1, p. 62). Let XV be a random variable on -V . Then its distribution is
said to factorize according to G, that is,

P XV � xV() � ∏
v∈V

P Xv � xv|Xpa(v) � xpa(v)
()

,

if and only if

Xv ⊥⊥XV\desG(v)|Xpa(v) for all v in V. (5)
Note that this result is sometimes considered as the counterpart of the theorem of Hammersley and Clifford
(Koller and Friedman 2009, theorem 4.2, p. 116) but for directed graphical models.

2.3. Junction Trees
To solve the MEU Problem (3), one needs to consider distributions μV on -V that factorize as in (2) for some
strategy δ. In theory, it suffices to consider distributions μV satisfying the conditional independences given
Equation (5) and such that Pμ(Xv|Xpa(v)) � pv|pa(v) for each vertex v that is not a decision. However, the joint
distribution μV on all the variables is too large to be manipulated in practice as soon as V is moderately large.
In that case, it is useful to work with a vector of moments τ � (τC)C∈9, where 9 ⊆ 2V , that is, a vector of
distributions τC on subsets of variables C of tractable size. A vector of moments (τC)C∈9 derives from a
distribution μV on -V if each moment τC ∈ [0, 1]-C is the marginal distribution induced by μV on C, that is,
τC(xC) � ∑

xV\C∈-V\C μV(xC, xV\C) for all C in 9 and xC in -C. To keep notations light, we will write this type of
equality more compactly as τC � ∑

xV\C μV . We use the notation μ � (μC)C∈9 for the vector of moments deriving
from a distribution, and we use Pμ or μV for the corresponding distribution on -V .

A necessary condition for a vector of moments (τC)C∈9 to derive from a distribution is to be locally consistent,
that is, to induce the same marginals on the intersections of pairs of elements of 9, that is, for all C1,C2 ∈ 9,
we have ∑

xC1\C2

τC1 �
∑
xC2\C1

τC2 ,

where, as before,
∑

xC1\C2 τC1 is the vector (∑xC1\C2∈-C1\C2 τC1(xC1\C2 , xC1∩C2))xC1∩C2∈-C1∩C2
. It turns out that graphical

model theory provides a condition on the choice of 9 together with the choice of local consistency constraints
which are sufficient for (τC)C∈9 to derive from a distribution on -V . This is done via the definition of a junction
tree. Let & � (9,!) be an undirected graph associated with G � (V,E) with 9 ⊆ 2V . If & is a tree and satisfies
the running intersection property, that is, given two vertices C1 and C2 in 9, any vertex C on the unique
undirected path from C1 to C2 in & satisfies C1 ∩ C2 ⊂ C, then & is called a junction tree of G. See Figure 4 for an
illustration of this notion. Given a junction tree &, its associated marginal polytope }0

& can be defined as

}0
& � τC()C∈9

τC ≥ 0 and
∑
xC

τC xC() � 1, ∀xC ∈ -C,∀C ∈ 9,

and
∑
xC1\C2

τC1 �
∑
xC2\C1

τC2 , ∀ C1,C2{ } ∈ !,

⃒⃒⃒⃒
⃒⃒⃒⃒ ⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (6)

Then τ � (τC)C∈9 is a vector of moments deriving from a distribution μV on -V if and only if τ ∈ }0
& (Wainwright

and Jordan 2008, proposition 2.1). Moreover, if we introduce the set of separators5 6 � {C1 ∩ C2 | {C1,C2} ∈ !},
then we have μV(xV) � (∏C∈9 τC(xC))/(∏S∈6 τS(xS)). The width of a junction tree & � (9,!) on G � (V,E) is the
maximum number of vertices of V in a vertex C of 9 minus one. The treewidth of a graphical model G is the
minimum width of a junction tree on G.

Parmentier et al.: Integer Programming for Influence Diagrams
214 INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS

3. RJTs
To solve the MEU Problem (3), we work on vectors of moments (μC)C∈9 that correspond to the moments of
distributions μ induced by policies δ ∈ Δ. Hence, we are interested in vectors μ of moments such that the
unique corresponding distribution μV on -V factorizes as a directed graphical model on G. Such vectors of
moments necessarily satisfy a “local” version of the conditional independence condition (5), namely,

∀C ∈ 9, ZC ∼ μC
() ⇒ Zv ⊥⊥ZC\des(v)|Zpa(v), ∀v ∈ V : fa(v) ⊆ C

()()
. (7)

Given a vector of moments μ in the marginal polytope of a junction tree (9,!), there exists a unique dis-
tribution μV on -V that factorizes according to the junction tree &. However, for a generic junction tree, if
μ � (μC)C∈9 is a vector of the moments of the marginal polytope, the fact that, for all C ∈ 9, property (7) holds
is not a sufficient condition for μ to be the moments of a distribution μV that factorizes on G. For instance, on
the junction tree of Figure 3(b), Equation (7) does not enforce the independence of u and v, which is required
on the graph of Figure 3(a). But it becomes a sufficient condition under the additional assumption that (9,!) is
an “RJT,” a notion that we introduce in this section and develop in more details in Appendix A.

3.1. Definition and Main Properties
From now on and in the rest of the paper, we consider a rooted tree & � (9,!) whose underlying undirected
graph is a junction tree on a graph G � (V,E). For any v ∈ V, by the running intersection property, the
subgraph &v of & induced on the nodes C of 9 containing v is a tree, and given that & is a rooted tree, so is &v.
We call the root of &v the root clique of v and denote it by Cv.

Definition 1. An RJT on G � (V,E) is a rooted tree with nodes in 2V such that
i. its underlying undirected graph & � (9,!) is a junction tree,
ii. for all v ∈ V, we have fa(v) ⊆ Cv.

Let & be an RJT on G, and let v be a vertex of V. Given C ∈ 9, let the offspring of C be defined by
offspring(C) � {v ∈ V : Cv � C}, where Cv is the above-defined root clique of v, and let Č denote C\offspring(C).

See Figure 4 for an example of this notion. Note that an RJT always exists. Indeed, the cluster graph
composed of a single vertex C � V is an RJT. Algorithms to build interesting RJTs are provided in Section 3.2.
The rooted treewidth of a graph G is the minimum width of an RJT on G.

Theorem 2, which is a natural generalization of the well-known Proposition 1, ensures that, given a vector of
moments on an RJT, if all these moments furthermore satisfy local independences, we can construct a dis-
tribution on the initial directed graphical model which admits these moments as marginals.

Theorem 2. Let μ be a vector of moments in the marginal polytope of an RJT & � (9,!) on G � (V,E). Let C be a clique, and
let ZC be the random variable on -C such that P(ZC � zC) � μC(zC). Assume that, for all C, μC is such that
Zv ⊥⊥ZC\des(v)|Zpa(v). Then the unique distribution on XV with moments μ � (μC)C∈9 factorizes according to G.

This result can be formulated more simply with the following simple assumption on the RJT.

Definition 2. We say that an RJT is a gradual RJT if ∀v ∈ V, offspring(Cv) � {v}.
Informally, in a gradual RJT, each cluster contains only a single node that is not present in the parent cluster.

Note that, by adding nodes to an RJT, we can always turn it into a gradual RJT. Indeed, suppose that
offspring(C) � {v1, . . . , vk}, where v1, . . . , vk are listed in topological order. It suffices to replace the node C by
C1 → C2 → · · · → Ck, where Ci � C\{vi+1, . . . , vk}, with an arc from the parent of C to C1 and arcs from Ck to the
children of C. Note that for a gradual RJT we have Čv � Cv\{v}. In the rest of the paper, we will therefore
restrict our focus to the case of gradual RJTs.

Figure 3. Example Where Satisfying (7) on Junction Tree (b) Is Not Sufficient to Ensure Factorization on Graph (a)

Parmentier et al.: Integer Programming for Influence Diagrams
INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS 215

Corollary 3. Let μ be a vector of moments in the marginal polytope of a gradual RJT & � (9,!) on G � (V,E). Then the
unique distribution on XV with moments μ � (μC)C∈9 that factorizes according to & does also factorize according to G if and
only if, for all v ∈ V, all xpa(v) such that μpa(v)(xpa(v)) �� 0, and all xCv\pa(v), we have

μCv xCv

() � μv|pa(v) xv|xpa(v)
()

μČv
xČv

()
, where μv|pa(v) xv|xpa(v)

()
:� μfa(v) xfa(v)

()
μpa(v) xpa(v)

() .
Jensen et al. (1994, beginning of section 4) introduced the concept of strong junction tree which is similar to our
concept of RJT, but they do not have the right properties for our approach.6

3.2. Building an RJT
Although ({V}, ∅) is an RJT, the concept has only practical interest if it is possible to construct RJTs with small
cluster nodes. In that respect, note that any RJT must satisfy, for all u, v ∈ V, the implication

∃w ∈ V s.t. Cv−−<Cw and u ∈ fa w()
and Cu−−<Cv

}
⇒ u ∈ Cv, (8)

where C −−<C′ denotes the existence of a C-C′ path in the RJT & considered. This notation will be used
throughout this section. Indeed, since u ∈ Cu and fa(w) ⊂ Cw by definition and since Cu −−<Cv−−<Cw, the
running intersection property implies u ∈ Cv. This motivates Algorithm 1, a simple gradual RJT construction
algorithm which propagates iteratively elements present in each cluster node to their parent cluster node, and
which thereby produces an RJT which is minimal in the sense that the implication in (8) is strengthened to an
equivalence. It turns out that the RJT produced by Algorithm 1 has been considered in the literature under the
name bucket tree (Kask et al. 2005, definition 5.2).7

The algorithm proceeds as follows. Let � be an arbitrary topological order on G, and let max� C denote the
maximum of C for the topological order �. The algorithm maintains a set C′

v for each vertex v, which coincides
at the end of the algorithm with the nodes Cv in the RJT produced. We recall that Č′

v is the set C′
v\{v}. As an

illustration, for any topological order on the graph of the chess example of Figure 2(b), Algorithm 1 produces

Figure 4. (a) A Directed Graph G; (b) A Junction Tree on G; (c) An RJT on G

Note. For each cluster C, we indicate on the left part of the labels the vertices of C\offspring(C) and on the right part the vertices of offspring(C).

Figure 5. RJT Produced by Algorithm 1 on the Example of Figure 2(b)

Note. The offspring of a node is to the right of symbol -.

Parmentier et al.: Integer Programming for Influence Diagrams
216 INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS

the RJT represented in Figure 5. The following proposition shows that Algorithm 1 produces an RJT & � (9,!)
which is minimal for � in the sense that it satisfies a converse of (8).

Algorithm 1 (Create a Minimal Gradual RJT Given a Topological Order)
1: Input G � (V,E) and a topological order � on G
2: Initialize C′

v � ∅ for all v ∈ V and !′ � ∅
3: for each node v of V taken in reverse topological order � do
4: C′

v ← fa(v) ∪⋃
w:(v,w)∈!′ Čw

5: if Č′
v �� ∅ then

6: u ← max�(Čv) 8 u is the maximal element of Čv ⊂ V according to �
7: !′ ← !′ ∪ (u, v)
8: end if
9: end for

10: ! ← {(C′
u,C

′
v) | (u, v) ∈ !′}

11: Return & � ((C′
v)v∈V ,!).

Proposition 4. Algorithm 1 produces an RJT such that the root node Cv of v is C′
v, satisfying offspring(Cv) � {v}, which

admits � as a topological order, and such that (u ∈ Cv) ⇒ (u � v). Moreover, its cluster nodes are minimal in the sense that

u ∈ Cv ⇒ ∃w ∈ V s.t. Cv−−<Cw and u ∈ fa w()
Cu−−<Cv.

{
(9)

Remark 3. Algorithm 1 takes in input a topological order onG. For practical use, we recommend using Algorithm 3
in Appendix B, which simultaneously builds the RJT and a “good” topological order.

4. MILP Formulation for IDs
Given that Algorithm 1 produces a gradual RJT we will implicitly only consider gradual RJTs from now on. In
the rest of the paper, we work with the following variant of the marginal polytope }0

& defined in Equation (6):

}& � μCv , μČv

()
v∈V

: μCv

()
v∈V ∈ }0

& and μČv
� ∑

xv

μCv

{ }
,

where moments μČv
have been introduced. This is for convenience, and all the results could have been written

using }0
&.

On graphical models, the inference problem, which is hard in general, becomes easy on junction trees. Since
problem (3) is NP hard even when restricted to graphs of treewidth two (Mauá et al. 2012b), unless P � NP, the
situation is strictly worse for the MEU problems associated with IDs. In particular, (3) is hard for IDs whose
graph G contains a directed tree with many roots,8 but such IDs are challenging for any method because they
have large cycles in their relevance graph,9 which requires updating many policies simultaneously in al-
gorithms like multiple policy update. However, we will see in this section that, given an RJT, we can obtain
mathematical programs for MEU Problem (3) whose variables correspond to moments of the cliques of
the RJT.

We first obtain an NLP formulation in Section 4.1 and then linearize it into an exact MILP in Section 4.2.

4.1. An Exact NLP Formulation
Consider a parameterized influence diagram (PID) encoded as the quadruple (G,-, p, r), where G � (V,E) is a
graph with set of vertices V partitioned into (Va,Vs), with - � ∏

v∈V -v the support of the vector of random
variables attached to all vertices of G, p � {pv|pa(v)}v∈Vs is the collection of fixed and assumed known conditional
probabilities, and r � {rv}v∈Vr is the collection of reward functions10 rv : -v → R which we will also view as
vectors rv ∈ R|-v |.

The result of Corollary 3 together with the need to enforce the values of the conditionals p motivates the
following construction. For (G,-, p, r) a given PID and & a given RJT, we introduce the polytope

3 G,-, p,&() � μ ∈ }& :μCv � μČv
pv|pa(v) for all v ∈ Vs

{ }
, (10)

Parmentier et al.: Integer Programming for Influence Diagrams
INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS 217

where the equality μCv � μČv
pv|pa(v) should be understood functionally, that is, meaning that μCv(xCv) �

μČv
(xČv

) pv|pa(v)(xv|xpa(v)),∀xCv ∈ -Cv ; we will use such functional (in)equalities throughout the paper. We omit
the dependence of 3 in (G,-, p,&) when the context is clear. Consider the following NLP

max
μ,δ

∑
v∈Vr

〈rv, μv〉 (11a)
s.t. μ ∈ 3 G,-, p,&(), (11b)

δ ∈ Δ, (11c)
μCv � δv|pa(v) μČv

,∀v ∈ Va, (11d)
where the inner product notation 〈rv, μv〉 stands for

∑
xv μv(xv)rv(xv). Note that the constraints δ ∈ Δ, that is

positivity and summing to 1, are implied by Constraints (11b) and (11d).11

By introducing the set of moments

6& G() � μ ∈ 3 :∃δ ∈ Δ, μCv � μČv
δv|paG(v) for all v in Va

{ }
, (12)

we can reformulate Problem (11) more concisely as

max
μ∈6& G()

∑
v∈Vr

〈rv, μv〉. (13)

As defined above, 6&(G) is the set of moments corresponding to distributions induced by feasible policies: μ is
in 6&(G) if there exists δ in Δ such that μCv(xCv) � Pδ(XCv � xCv) for all v and xCv . We write 6(G) when & is clear
from context. It is nonconvex in general as shown by the examples in the proof of Theorem 9. However, we
show in Section 6 that 6(G) is a polytope if G is soluble, a property identifying “easy” IDs.

Since, in the above NLP, by Corollary 3, the equality constraints (10) and (11d) together guarantee that the
associated distribution factorizes according to G and since (10) also enforces that the conditionals in p are
correct, we have the following result:

Theorem 5. NLP Problems (11) and (13) are equivalent to the MEU Problem (3) in the sense that they have the same value
and that if (μ, δ) is a feasible solution for Problem (11), then δ defines an admissible strategy for Problem (3), and μ
characterizes the moments of the distribution induced by δ.

Proof. If (μ, δ) is a solution of (11), then μ is a solution of (13), and conversely, if μ is a solution of (13), by the
definition of 6(G), there exists δ such that (μ, δ) is a solution of (11), which gives the equivalence be-
tween (11) and (13).

Now let (μ, δ) be an admissible solution of Problem (11). Then δ is an admissible solution of the MEU
problem. We now prove that μ corresponds to the moments of the distribution Pδ induced by δ, from which
we can deduce that Eδ(∑v∈Vr rv(Xv)) � ∑

v∈Vr〈rv, μv〉. Note that if A, P, and D are disjoint subsets of V, μ is a
distribution on -V , μA∪P∪D is the distribution induced by μ on -A∪P∪D, and pD|P is a conditional distribution of D
given P, then

μA∪P∪D � μA∪P pD|P �⇒ XD ⊥⊥XA | XP, (14)
where the independence is according to μ. By (14), we have that the vector μ satisfies the conditions of
Theorem 2 and, hence, corresponds to a distribution Pμ that factorizes on G. Furthermore, constraint (10)
ensures that Pμ(Xv|Xpa(v)) � pv|pa(v) for all v ∈ Vs, which yields the result. Conversely, let δ be an admissible
solution of MEU Problem (3), and let μ be the vector of moments induced by Pδ. We have μCv � μČv

pv|pa(v) for v
in Vs and μCv �μČv

δv|pa(v) for v in Va, and (μ, δ) is a solution of (11). Furthermore, Eδ(∑v∈Vr rv(Xv)) �∑
v∈Vr〈rv,μv〉,

and (11) is equivalent to MEU Problem (3).

4.2. MILP Formulation
NLP (11) is hard to solve due to nonlinear constraints (11d). But by Theorem 5, Problems (3) and (11) are
equivalent and, in particular, admit the same optimal solutions in terms of δ.

We recall that there always exists at least one optimal strategy which is deterministic (and therefore integral)
for Problem (3), that is, a strategy δ such that

δv|pa(v) xfa(v)
() ∈ 0, 1{ }, ∀xfa(v) ∈ -fa(v),∀v ∈ Va. (15)

Parmentier et al.: Integer Programming for Influence Diagrams
218 INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS

We can therefore add integrality constraint (15) to (11). With this integrality constraint, Equation (11d)
becomes a logical constraint, that is, a constraint of the form λy � z with λ binary and continuous y and z. Such
constraints can be handled by modern MILP solvers, such as CPLEX or Gurobi, that can therefore directly
solve Problem (11). Alternatively, by a classical result in integer programming, we can turn Problem (11)
into an equivalent MILP by replacing constraint (11d) by its McCormick relaxation (McCormick 1976). For a
given p, let b be a vector of upper bounds bČv

(xČv
) satisfying

Pδ′ XČv
� xČv

()
≤ bČv

xČv

()
∀δ′ ∈ Δ, ∀v ∈ Va, ∀xČv

∈ -Čv
. (16)

For such a vector b, we say that, for a given node v, (μCv , δv|pa(v)) satisfies McCormick’s inequalities (see
Appendix E) if

μCv ≥ μČv
+ δv|pa(v) − 1
()

bČv
,

μCv ≤ δv|pa(v) bČv
,

μCv ≤ μČv
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (McCormick(v, b))

Note that the last inequality μCv ≤ μČv
can be omitted in our case as it is implied by the marginalization

constraint μČv
� ∑

xv μCv in the definition of }&. Given the upper bounds provided by b, we introduce the
polytope of valid moments and decisions satisfying all McCormick constraints:

4b G,-, p,&() � μ, δ
() ∈ }& × Δ :McCormick v, b() is satisfied for all v ∈ Va{ }

. (17)
Thus, by using McCormick on constraint (11d), we get that the MEU Problem (3) is equivalent to the fol-
lowing MILP:

max
μ,δ

∑
v∈Vr

〈rv, μv〉 (18a)
s.t. μ ∈ 3 G,-, p,&(), (18b)

δ ∈ Δd, (18c)
μ, δ
() ∈ 4b, (18d)

where Δd is the set of deterministic policies and contains the integrality constraints (15).

Remark 4. The strength of the McCormick constraints (McCormick(v, b)) depends on the quality of the bounds bČv

on μČv. As for a solution μ of Problem (18), μČv
corresponds to a probability distribution; the simplest admissible

bound over μČv
is just b � 1, leading to the polytope 41. Unfortunately, McCormick’s constraints are loose in this

case: we show in Appendix E.2.1 that, for any μ in 3, there exists δ in Δ such that (μ, δ) satisfies those McCormick
constraints. Hence, when b � 1, McCormick constraints fail to retain any information about the conditional in-
dependence statements encoded in the associated nonlinear constraints. Since δ does not appear outside of the
McCormick constraints, their sole interest in that case is to enable the branchingdecisions on δ to have an impact onμ.
Appendix E.2.2 gives an example showing that McCormick constraints do retain information about the conditional
independence if bounds bČv

smaller than 1 are used. Finally, Appendix E.2.3 provides a dynamic programming
algorithm that efficiently computes such a b.

5. Valid Cuts
Classical techniques in integer programming, such as branch-and-bound algorithms, rely on solving the
relaxation of the MILP to obtain a lower bound on the value of the objective. For Problem (18) the relaxation is
likely to be poor, and so the MILP is not well solved by off-the-shelf solvers. Indeed, as explained in Remark 4,
when b � 1, the McCormick inequalities completely fail to capture, in the linear relaxation of MILP (18), the
conditional independence encoded by nonlinear constraint (11d). Further, improving the bound b does not
completely address the issue. In this section, we introduce valid cuts to strengthen the relaxation and ease the
MILP resolution. Recall that a valid cut for a MILP is an (in)equality that is satisfied by any solution of the
MILP, but not necessarily by solutions of its linear relaxation. A family of valid cuts is stronger than another
when the former yields a polytope strictly included in the latter.

Parmentier et al.: Integer Programming for Influence Diagrams
INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS 219

5.1. Constructing Valid Cuts
By restricting ourselves to vectors of moments μ ∈ 3, we have imposed

P Xv|XV\des(v)
() � P Xv|XČv

()
� pv|pa(v) for all v in Vs,

because μ ∈ 3 must satisfy μCv � μČv
pv|pa(v). If we could impose as well the nonlinear constraints μCv �

μČv
δv|pa(v) for v in Va, we would be able to impose that decisions encoded in μ at the nodes a ∈ Va satisfy

P(Xa|XCa\{a}) � P(Xa|Xpa(a)), and thanks to Corollary 3, this would be sufficient to guarantee that the distribution
with moments (μCv)v∈V factorizes according to G. A key question is therefore whether we can enforce some
conditional independence implied by the nonlinear constraints, and thus lost in the linear relaxation, through
linear constraints. This seems possible, because as an indirect consequence of setting the conditional dis-
tributions pv|pa(v) for v ∈ Vs, there are other conditional distributions whose value does not depend on δ.
Indeed, thanks to the structure of the graph G, for some pairs of sets of vertices C,D with D ⊆ C, the con-
ditional probabilities Pδ(XD � xD|XC\D � xC\D) are identical12 for any strategy δ and can be precomputed
using a classical probabilistic inference algorithm on the graph. We can thus add linear constraints, also
known as valid cuts, of the form

μC � μC\D pD|C\D. (19)
Although these additional constraints are not needed to set the value of the conditionals on v ∈ Vs and the
conditional independences of the form Xv ⊥⊥XV\des(v) | Xpa(v) for v ∈ Vs, they can be useful to enforce some of
the conditional independences that should be satisfied by μ at decision nodes. In particular, if there exists a
strict subset M of C\D such that pD|C\D � pD|M, then (19) enforces that, for any v ∈ Va ∩ (C\(D ∪M)), we have
P(Xa|XD∪M) � P(Xa|XM). Clearly, the larger the D, the stronger the valid cut. This motivates the follow-
ing definition.

Definition 3. Given a set of vertices C, we define C⊥⊥ to be the largest subset D of C such that, for any parameterization of G,
there exists pD|C\D such that Pδ(XD|XC\D) � pD|C\D regardless of the strategy δ. We define C⊥⊥/ as C\C⊥⊥ .

It is not obvious that a largest such set exists and is unique and, therefore, that C⊥⊥ is well defined. We fully
characterize C⊥⊥ and prove its existence in Appendix C.1. Given that C⊥⊥ is well defined, the equalities

μC � μC⊥⊥/pC⊥⊥ |C⊥⊥/ , ∀C ∈ 9, (20)
are the strongest valid cuts of the form (19) that we can obtain for Problem (18). For each C, Cohen and
Parmentier (2019) show that C⊥⊥ can even be computed in O(|C‖E|) time, and we believe it can be computed in
O(|E|) time, so to compute (C⊥⊥

v)v∈Va , the total complexity is between O(|Va‖V|) and O(maxv∈Va |Cv‖Va‖V|). Then
(μC)C∈9 can be computed in O(κω|9|) time (which is O(κω|V|) for a graded RJT), with ω � maxC∈9 |C| the width
of the RJT and κ � maxv∈V |-v|. In our experiments, the time to compute all the C⊥⊥ and all the pC⊥⊥ |C⊥⊥/ was
negligible compared with the time needed to solve a linear program or the MILP.

We can then define 3⊥⊥ as the polytope we obtain when we strengthen 3 with our valid cuts:

3⊥⊥ G,-, p,&() � μ ∈ 3 :μCv � pC⊥⊥
v |C⊥⊥/

v

∑
xC⊥⊥v

μCv for all v ∈ Va
⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭. (21)

In the definition of 3⊥⊥, we decided to introduce valid cuts of the form (20) only for sets of vertices C of the
form Cv with v ∈ Va. This is to strike a balance between the number of constraints added and the number of
independences enforced. Our choice is however heuristic, and it could notably be relevant to introduce
constraints of the form (20) for well-chosen C ⊊ Cv.

Figure 6 provides an example of an ID where the introduction of a valid cut of the form (20) reduces the
size of the initial polytope. Indeed, the cluster C � {a,u, v, b} leads to C⊥⊥ � {u}, and the resulting cut (20) is
not implied by the linear inequalities of (18). Indeed, suppose that -a � -v � {0}, whereas -u � -b � {0, 1}.

Figure 6. ID and Its RJT with a Nonvalid Cut (20) for C � {a, u, v, b} with C⊥⊥ � {u}

Parmentier et al.: Integer Programming for Influence Diagrams
220 INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS

Then the solution defined by μauvb(0, i, 0, i) � 0.5 and μauvb(0, i, 0, 1 − i) � 0 for i ∈ {0, 1} is in the linear relaxation
of (18) but does not satisfy (20). To compute C⊥⊥ , we have used the characterization provided in Appendix C.1.

5.2. Strength of the Relaxations and Their Interpretation in Terms of Graph
Consider (G, ρ), a PID with G � (Vs,Va,E) and ρ � (-, p, r). Let & be an RJT on G, and let b be an admissible
bound satisfying (16). The valid cuts of Section 5.1 enable the introduction of the following strengthened
version of MILP (18):

max
μ, δ

∑
v∈Vr

〈rv, μv〉 subject to μ ∈ 3⊥⊥ G,-, p,&(), δ ∈ Δd, μ, δ
() ∈ 4b. (22)

The following proposition summarizes the results of Section 5.1.

Proposition 6. Any feasible solution (μ, δ) of MILP (22) is such that μ is the vector of moments of the distribution Pδ.Hence,
(μ, δ) is an optimal solution of (22) if and only if δ is an optimal deterministic solution of the MEU problem (3) on (G, ρ).

In this section, we provide interpretations of the linear relaxations of (18) and (22) in terms of graphs. We
introduce the sets of arcs and IDs

E � E ∪ u, v() : v ∈ Va and u ∈ Cv\fa(v){ }, G � Vs,Va,E
()

,

E⊥⊥ � E ∪ u, v() : v ∈ Va and u ∈ C⊥⊥/
v \fa(v){ }

, and G⊥⊥ � Vs,Va,E⊥⊥().
Figure 7 illustrates G and G⊥⊥ on the ID of Figure 2(b). Note that E ⊆ E⊥⊥ ⊆ E, and note the following three facts
on G and G⊥⊥. First, the definition of both IDs depends on G and &. Second, & is still an RJT on G and G⊥⊥. Third,
any parameterization (-V , p, r) of G is also a parameterization of G and of G⊥⊥. The second and third results are
satisfied by any ID G′ � (Vs,Va,E ∪ E′), where E′ contains only arcs of the form (u, v) with v ∈ Va and u ∈ Cv.
Hence, if we denote by ΔG′ the set of feasible strategies for (G′,-V , p, r), we can extend the definition of 6(G) in
Equation (12) to such G′ with

6 G′() � μ ∈ 3 :∃δ ∈ ΔG′ , μCv � μČvδv|paG′ (v) for all v in Va
{ }

.

Theorem 7. We have

3 � 6 G
()

and max
μ∈3

∑
v∈Vr

〈rv, μv〉 � MEU G, ρ
()

,

and

3⊥⊥ � 6 G⊥⊥() and max
μ∈3⊥⊥

∑
v∈Vr

〈rv, μv〉 � MEU G⊥⊥, ρ
()

.

Hence, if (μ, δ) is a solution of the linear relaxation of (18), then δ is a strategy on G, whereas if (μ, δ) is a
solution of the linear relaxation of (22), then δ is a strategy on G⊥⊥.

Furthermore, note that 6(G′) is generally not a polytope. Indeed, when G′ � G, this is the reason why (11) is
not a linear program. An important result of the theorem is that 6(G) and 6(G⊥⊥) are polytopes, and MEU(G, ρ)
and MEU(G⊥⊥, ρ) can therefore be solved using the linear programs maxμ∈3

∑
v∈Vr〈rv, μv〉 and maxμ∈3⊥⊥∑

v∈Vr〈rv, μv〉, respectively. The proof of the theorem can be found in Appendix C.2.

Figure 7. Soluble Relaxations Corresponding to Linear Relaxations for the Chess Example

Parmentier et al.: Integer Programming for Influence Diagrams
INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS 221

6. Soluble IDs
In this section, we make the assumption that IDs are such that any vertex v ∈ V has a descendant in the set of
utility vertices Vr, that is, Vs ∪ Va � anc(Vr). The following remark explains why we can make this assumption
without loss of generality.

Remark 5. Consider a parameterized ID (G, ρ), where G � (Vs,Va,E) and Vs is the union of chance vertices Vc and
utility vertices Vr. Let (G′, ρ′) be the ID obtained by removing any vertex that is not in Vr and has no descendant in
Vr, and restrict ρ accordingly. If a random vectorXV factorizes as a directed graphical model on (V,E) andV′ ⊆ V is
such that anc(V′) � V′, then XV′ factorizes as a directed graphical model on the subgraph induced by V′ with the
same conditional probabilities pv|pa(v). Hence, given a strategy δ on (G, ρ) and its restriction δ′ to (G′, ρ′), we have
Eδ(∑v∈Vr rv(Xv)) � Eδ′ (∑v∈Vr rv(Xv)), where the first expectation is taken in (G, ρ) and the second in (G′, ρ′), and the
two IDs model the same MEU problem.

The proofs of this section are quite technical and can be found in Appendix D.

6.1. Linear Program for Soluble IDs
Consider an ID G � (Vs,Va,E) with Vs � Vc ∪ Vr. Given a strategy (δu)u∈Va and a decision vertex v, we denote
by δ−v the partial strategy (δu)u∈Va\v. A strategy (δv)v∈Va is called a local optimum if

δv ∈ argmax
δ′v∈Δv

Eδ′v,δ−v
∑
u∈Vr

ru Xu()
()

for each vertex v in Va.

It is a global optimum if it is an optimal solution of (3). Three concepts, strategic relevance, s-reachability, and the
relevance graph have been introduced in the literature to characterize when a local minimum is also global (see,
e.g., Koller and Friedman 2009, chapter 23.5). A decision vertex v strategically relies on u if the choice of a
locally optimal policy δv given (δw)w��v depends on δu for some parameterization ρ. As we detail at the
beginning of Appendix D, s-reachability is a graphical characterization of strategic relevance which can be
checked in linear time in the size of G: If u is not s-reachable from v, then v does not strategically rely on u,
whereas if u is s-reachable from v, then there exists a parameterization ρ such that v strategically relies on u.
The relevance graph of G is the digraph H with vertex set Va and whose arcs are the pairs (v,u) of decision
vertices such that u is s-reachable from v. Finally, the SPU algorithm (Lauritzen and Nilsson 2001) is the
standard coordinate ascent heuristic for IDs. It iteratively improves a strategy δ as follows: At each step, a
vertex v is picked, and δv is replaced by an element in argmaxδ′v∈Δv

Eδ′v,δ−v(∑u∈Vr ru(Xu)). The following
proposition characterizes a subset of IDs, called soluble IDs, which are easily solved, and provides several
equivalent criteria to identify them.

Proposition 8 (Koller and Friedman 2009, theorem 23.5). Given an ID G, the following statements are equivalent and
define a soluble ID.

1. For any parameterization ρ of G, any local optimum is a global optimum.
2. For any parameterization ρ of G, SPU converges to a global optimum in a finite number of steps.13

3. The relevance graph of G is acyclic.

Given a parameterized ID G and an RJT &, we introduced in Equation (12) the notation 6(G) for the subset
of the marginal polytope }G corresponding to moments of policies. The following theorem introduces a new
characterization of soluble IDs in terms of convexity.

Theorem 9. If G is not soluble, then there exists a parameterization ρ such that, for any junction tree &, the set of achievable
moments 6&(G) is not convex. If G is soluble, Algorithm 2 returns an RJT such that3⊥⊥ � 6&(G) for any parameterization ρ.

The property of being soluble characterizes “easy” IDs that can be solved by SPU. Theorems 5 and 9 imply
that if G is soluble, then our MILP formulation (22) reduces to the linear program

max
μ∈3⊥⊥

∑
v∈Vr

〈rv, μv〉

and is therefore “easy” to solve. Of course, this property of being “easy” refers only to the decision part of the
ID. If a soluble ID is such that, given a strategy, the inference problem is not tractable, then both SPU and our
MILP formulation will not be tractable in practice. Theorem 9 is a corollary of Theorem 7 and the following
lemma, and both results are proved in Appendix D.

Parmentier et al.: Integer Programming for Influence Diagrams
222 INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS

Lemma 10. There exists an RJT & such that G⊥⊥ � G if and only if G is soluble. Such an RJT can be computed using
Algorithm 2.

Note that, based on a topological order of the relevance graph, Algorithm 2 proceeds by computing a larger
graph (satisfying perfect recall) that contains the graph G and that assigns the same parent sets to elements of
Vs as in G, and then uses a topological order of this graph to order the nodes of G for the computation of
an RJT.

Algorithm 2 (Build a “Good” RJT for a Soluble Graph G)
1: Input: An ID G � (Vs,Va,E).
2: Initialize: E′ � ∅.
3: Compute the relevance graph H of G
4: Compute an arbitrary topological order �H on Va for the relevance graph H
5: E′ ← E ∪ {(u, v) ∈ Va × Va :u �H v}
6: G′ ← (V,E′)
7: E′′ ← E ∪ {(u, v) ∈ Vs × Va :u /∈ desG′ (v)}
8: G′′ � (V,E′′)
9: Compute an arbitrary topological order � on G′′

10: Return the result of Algorithm 1 for (G,�)

6.2. Comparison of Soluble and Linear Relaxations
MILP solvers are based on (much improved) branch-and-bound algorithms that use the linear relaxation to
obtain bounds. Their ability to solve formulation (22) therefore depends on the quality of the bound provided
by the linear relaxation. Since SPU solves efficiently soluble IDs, we could imagine alternative branch-and-
bound schemes that use bounds computed using SPU on an ID larger than G which is soluble. To formalize
this idea, we introduce the following notion: A soluble graph relaxation of an ID G � (Vs,Va,E) is a soluble ID
G′ � (Vs,Va,E′), where E′ is the union of E and a set of arcs with head in Va.

Note that Theorem 7 can be reinterpreted as the link between soluble graph relaxation and linear relax-
ations. And since 6(G) � 3 and 6(G⊥⊥) � 3⊥⊥, by Theorem 9, G⊥⊥ and G are soluble and, therefore, soluble graph
relaxations of G.

Since any feasible strategy for the ID G is a feasible strategy for a soluble graph relaxation G′, for any
parameterization ρ, the value of MEU(G′, ρ), which can be computed by SPU, provides a tractable bound on
MEU(G, ρ). Soluble relaxations can therefore be used in branch-and-bound schemes for IDs, as proposed in
Khaled et al. (2013). To compare the relevance of such a scheme to our MILP approach we need to compare the
quality of the soluble graph relaxation and linear relaxation bounds.

Corollary 11. Let G′ be a soluble graph relaxation of G, and let & be the RJT obtained by running Algorithm 2 on G′. Then the
linear relaxation of (22) applied to G with RJT & provides a bound at least as good as the one provided by the soluble
relaxation G′.

Note that this bound can sometimes be strictly better thanks to constraints (μ, δ) ∈ 4b.

Remark 6. In the literature, soluble relaxations have already been used to obtain bounds in different settings. For
example, Yuan et al. (2010) used them in a branch-and-bound scheme. Their bounds rely on the notion of sufficient
information set (SIS) for a decision node v (Nilsson and Höhle 2001).14 SISs are sets of nodes that have the following
property: if, given an ID G, we have a SISDv for each decision node v, then the ID we obtain when we add arcs u, v
for each u in Dv is a soluble relaxation of G. Different SISs may be available for a given decision vertex. Poh and
Horvitz (1996, theorem 2) show that the closer the SIS is to the descendant of the vertex, the worse the bound is, but
the easier the inference is. Yuan et al. (2010) make the choice of an easy inference and propose to use a SIS of
minimum cardinality. An alternative option would be to add the perfect recall arcs, which would lead to a much
harder inference problem but to better bounds. Using our G⊥⊥ corresponds to the following choice: among the SISs
that enable to use our RJT for inference, use the one that leads to the best relaxation.

7. Numerical Experiments
In this paper, we have introduced MILP formulation (18) for the MEU problem and shown with Corollary 11
that, when strengthened with valid inequalities and well-chosen bounds in the McCormick constraints, the
bounds provided by the linear relaxation of our formulations are better than the ones obtained by the soluble

Parmentier et al.: Integer Programming for Influence Diagrams
INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS 223

relaxations used in the literature. In this section, we study how these formulations behave numerically on
instances of Examples 1 and 3.

Our formulations should not be seen as an alternative to SPU since they have different objectives. SPU is a
heuristic that enables one to find quickly a good solution, which is generally a local optimum on our instances
because these are not soluble IDs. Our exact approaches are an order of magnitude slower than SPU but find
better solutions than SPU and prove small optimality gaps. It is therefore natural to use the two approaches
sequentially and warm start the MILP solver with the solution returned by SPU, which we do in all our
numerical experiments.

Given their importance to reduce the optimality gaps, we carefully study the impact of our valid inequalities
on the linear relaxation bound. For notational simplicity and since it is unambiguous, in the rest of this section,
we use the same notation to refer to a given node of the graph and to refer to the random variable associated
with this node.

7.1. Experimental Settings
7.1.1. Experiments Performed on Each Instance. We have introduced two elements to strengthen the linear
relaxation of our MILP formulation. We remind the reader that we introduced in Equation (17) the polytope 4b

obtained using the vector of bounds b in McCormick constraints. Also, recall from Remark 4 that, in the special
case of the polytope 41 obtained with b � 1, McCormick constraints are loose. To study the impact of
McCormick constraints and valid inequalities, we solve the problems max{∑v∈Vr〈rv, μv〉 | (μ, δ) ∈ 4, δ ∈ Δd} with
four different sets 4: 41 � (3 × Δd) ∩ 41 (no cuts), 4b � (3 × Δd) ∩ 4b (McCormick only), 4⊥⊥,1 � (3⊥⊥ × Δd) ∩ 41

(independence cuts only), and 4⊥⊥,b � (3⊥⊥ × Δd) ∩ 4b (McCormick and independence cuts).

7.1.2. InstancesConsidered. Examples 1 and 3 are multistage models. Let T denote the number of time steps of
an instance. Once T has been chosen, the ID G is known, and all that is left to do is to choose a parame-
terization ρ. We consider instances such that, for all v ∈ fa(Va), -v has ka elements, and for all v ∈ V\fa(Va), -s

has ks elements. As we explain in the next paragraph, ks,ka, and T control how hard the problem is. To
generate a PID instance, we start by choosing (ks,ka,T), which also sets the ID. Then we draw uniformly on
[0, 1] the conditional probabilities pv|pa(v) for all v ∈ V\Va and xfa(v) ∈ -fa(v), and we renormalize. We draw
uniformly on [0, 10] the rewards rv(xv) for all v ∈ Vr and all xv ∈ -v. For our results to be representative of any
instance with parameters (ks, ka,T), we generate 50 instances for each triplet and report averaged results over
these 50 instances.

7.1.3. Intrinsic Difficulty of the Instances Considered. Solving an ID requires finding an optimal strategy, which
is difficult because evaluating a given strategy is already difficult in the first place, and because optimizing on
the set of strategies is then also difficult. The difficulty of evaluating a strategy is the difficulty of solving an
inference problem on the underlying graph. A good indicator of this difficulty is therefore the treewidth of the
graph. There is no measure that characterizes the intrinsic complexity of the problem of finding an optimal
strategy, but the cost of the naive approach is the number of feasible deterministic strategies (Mauá et al.
2012b), that is, |Δd|. Our instances have a moderate treewidth, two for Example 1 and three for Example 3, and
are therefore not difficult from an inference point of view. But they could be a priori difficult from an
optimization point of view, because Δd

⃒⃒ ⃒⃒ � ∏
v∈Va |-v|

∏
u∈pa(v) |-u | � kTksa is large.

7.1.4. Size of Our MILP Formulations on the Instances Considered. The number of constraints and variables in
our MILP15 is in O(|V|κωr+1), where ωr is the rooted treewidth of the ID and κ � maxv∈V |-v|. Our MILP
formulations can therefore only deal with instances of moderate rooted treewidth, which can be arbitrarily
larger than the treewidth. In our examples, the rooted treewidth is equal to the treewidth and no greater than
three while κ � max(ks,ka), and so the size of the MILPs remains tractable for instances with large |Δd|.

7.1.5. Experimental Settings. All MILPs have been written in Julia (Bezanson et al. 2017) with the JuMP
(Dunning et al. 2017) interface and solved using Gurobi 7.5.2 with the default settings. Experiments have been
run on a server with 192 Gb of RAM and 32 cores at 3.30 GHz.

7.1.6. Reported Results. The numerical results obtained on Examples 1 and 3 are reported in Table 1.
We denote by z, zLR, and zB the value of the best integer solution found, the optimal value of the linear
relaxation, and the best upper bound found, respectively. We define the integrality gap gi as zLR−z

zLR and the final

Parmentier et al.: Integer Programming for Influence Diagrams
224 INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS

gap gf as zB−z
zB . Let zSPU be the value obtained using SPU. We define the improvement with respect to SPU iSPU

as iSPU � z−zSPU
zSPU . Each line in Table 1 provides average values of different quantities on 50 instances with

identical parameter (ks,ka,T). The first column specifies the value of (ks,ka,T) for the instances considered; the
second column specifies the approximate number of admissible strategies. The third column indicates the cuts
used. In the next three columns, we report the average value of gi, gf, and iSPU on the 50 instances considered.
Column “Opt” provides the percentage of instances solved to optimality, and column “Time” provides the
average computing time. All gaps are given in percent, and computing times are given in seconds. Sometimes,
the time limit is reached only for some of the 50 instances, and we end up with a nonzero average final gap
together with an average computing time that is smaller than the time limit.

7.2. Bob and Alice Daily Chess Game
We consider the chess game example represented in Figure 2(b). The beginning of the RJT built by Algorithm 1
for this example is represented in Figure 8. The rooted treewidth of this problem is three. Table 1 reports
results on the generated instances. We can tackle large instances of this problem. We can reach optimality in
less than one hour for a strategy set of size 10171 and find a small provable gap on even bigger instances.
Moreover, we see that the independence cuts enable one to strongly reduce the gaps and the computing time,
whereas the improved McCormick bounds yield more minor improvements. However, on this problem, our
MILP formulation only marginally improves the results returned by SPU, and its main value is the
bound obtained.

Figure 8. RJT for the Chess Game

Note. The element to the right of — is the offspring.

Table 1. Mean Results on 50 Randomly Generated Instances with a Time Limit of 3,600 s

(ks, ka,T) |Δd| Polytope

Example 3: Chess game Example 1: POMDP

gi(%) gf(%) iSPU(%) Opt(%) Time(s) gi(%) gf(%) iSPU(%) Opt(%) Time(s)

(3, 5, 20) 1069 4
1 6.33 0.41 0.04 52 1,826 8.64 4.69 0.99 8 3,094

4
b 5.73 0.42 0.04 54 1,807 8.11 4.42 0.97 16 3,071

4⊥⊥,1 1.30 0.22 0.04 68 1,405 2.33 1.30 0.99 36 2,431
4⊥⊥,b 1.20 0.20 0.04 68 1,331 1.96 1.28 1.00 36 2,376

(3, 6, 20) 1093 4
1 5.69 0.66 0.05 27 2,702 9.66 5.88 1.99 10 3,244

4
b 5.14 0.66 0.05 31 2,612 9.08 5.56 1.99 12 3,235

4⊥⊥,1 1.02 0.32 0.05 45 2,126 2.54 1.57 2.00 20 2,931
4⊥⊥,b 0.95 0.30 0.05 47 2,112 2.08 1.52 2.00 24 2,800

(3, 9, 20) 10171 4
1 6.49 1.79 0.09 6 3,433 8.15 5.99 1.85 4 3,514

4
b 5.94 1.90 0.07 6 3,476 7.68 5.73 1.88 4 3,477

4⊥⊥,1 1.54 0.84 0.09 18 2,974 2.22 1.65 1.85 14 3,124
4⊥⊥,b 1.45 0.83 0.07 14 3,103 1.83 1.59 1.85 16 3,087

(3, 10, 20) 10200 4
1 6.85 2.36 0.06 2 3,540 10.99 8.68 1.21 4 3,469

4
b 6.31 2.08 0.05 6 3,421 10.30 8.50 1.27 4 3,467

4⊥⊥,1 1.54 0.99 0.07 14 3,110 3.32 2.74 1.20 8 3,314
4⊥⊥,b 1.45 0.96 0.06 14 3,110 2.80 2.72 1.21 8 3,314

(4, 9, 20) 10171 4
1 7.44 4.04 0.04 0 >3,600 10.27 7.94 0.98 0 >3,600

4
b 6.99 4.15 0.04 0 >3,600 9.57 7.77 1.00 0 >3,600

4⊥⊥,1 1.74 1.15 0.04 10 3,240 2.85 2.18 1.00 10 3,274
4⊥⊥,b 1.64 1.15 0.04 10 3,240 2.26 2.14 0.99 10 3,263

(4, 10, 20) 10200 4
1 8.07 4.20 0.08 0 >3,600 12.8 10.5 0.81 0 >3,600

4
b 7.62 4.65 0.04 0 >3,600 12.0 10.4 0.86 0 >3,600

4⊥⊥,1 1.31 1.31 0.07 5 3,411 4.1 3.5 0.41 0 >3,600
4⊥⊥,b 1.29 1.29 0.08 5 3,410 3.4 3.4 0.51 0 >3,600

Parmentier et al.: Integer Programming for Influence Diagrams
INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS 225

7.3. POMDP with Limited Memory
We now consider our POMDP instances. Figure 1(b) provides the graph representation of the POMDP with
limited information. The rooted treewidth of this problem is two. This ID is not soluble.16 Figure 9 represents
the RJT built by Algorithm 1. On this RJT, G⊥⊥ � G, and thus, 3⊥⊥ � P, which is also the constraint set of
the classical MDP relaxation of a POMDP, in which the decision maker knows the state st when he makes the
decision at. This MDP relaxation leads to poor lower bounds. We therefore use instead the larger RJT
represented in Figure 10. In that RJT, C⊥⊥

at � {st}, so that G⊥⊥ is not anymore equal to G and the valid cuts enable
one to enforce the independence of st and at given (st−1, at−1, ot) for t > 1. Table 1 provides the numerical results
on our instances. This example is harder to solve to optimality. SPU has worse performance as well on this
example, and our formulations manage to improve the solution found by SPU. Once again, the valid cuts
significantly reduce the linear relaxation gap and the solving time, even on large instances.

Conclusion
This paper introduced linear programming and MILP approaches for the MEU problem on IDs. The variables
of the programs correspond, for the distributions induced by feasible policies, to the collection of vector of
moments of the distribution on subsets of the variables that are associated to nodes of a new kind of junction
tree, which we call an RJT. We have also proposed algorithms to build RJTs tailored to our linear and in-
teger programs.

Soluble IDs are IDs whose MEU problem is easy, in the sense that it can be solved by the SPU algorithm. We
showed that for soluble IDs the MEU problem can also be solved exactly via our linear programs. Fur-
thermore, we characterized soluble IDs as the IDs for which there exists a junction tree such that the set of
possible vector of moments on the nodes of the tree is convex for any parameterization of the ID.

Finally, we proposed a MILP approach to solve the MEU problem on nonsoluble IDs together with valid
cuts. The bound provided by the linear relaxation is better than the bound that could be obtained using SPU
on a soluble relaxation. Numerical experiments show that the bound is indeed better in practice.

Two elements limit the scale of the problems that can be dealt with using our approach. First, we use exact
inference, which limits the applicability to models with small treewidth. Second, RJTs may contain clusters
larger than those of standard junction trees. A possible way to overcome these limitations in future works
would be to develop mathematical programming heuristics for IDs that use variational inference instead of
exact inference.

Acknowledgments
The authors thank the reviewers for their thorough reading and all their useful comments and suggestions that helped them
improve the paper.

Endnotes
1PIDs are a definition that we introduced and which is not introduced in Koller and Friedman (2009). We introduce it to distinguish properties
due to the parameterization from properties due to the graph itself.
2 If Alice did not want to play every day, we would also need to model her decisions. In that case, Bob and Alice would have different objectives
and we would need to use a multiagent ID (Koller and Milch 2003). However, since Alice wants to play chess every day, her decisions do not
need to be taken into account, and we can model the problem as an ID.

Figure 9. RJT Built by Algorithm 1 for a POMDP with Limited Memory

Figure 10. A Bigger RJT for a POMDP with Limited Memory

Parmentier et al.: Integer Programming for Influence Diagrams
226 INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS

3 See https://github.com/Victor2175/mathprog_influence_diagrams (accessed on June 10, 2020).
4The probabilistic graphical model community sometimes calls a directed tree what we call here a rooted tree, and a polytree what we call here a
directed tree.
5The separators are often included in the definition of the junction tree and their associated moments τS in the definition of the marginal
polytope. We do not include them in this work, because we do not need them in our mathematical programming formulations. Adding them
would increase the size of the mathematical program and downgrade the performance of the solver.
6The concept of strong junction tree relies on the notion of elimination ordering for a given ID with perfect recall. The main difference is that a
strong junction tree is a notion on an ID, where the set of decision vertices and their orders play a role, whereas RJTs rely on the underlying
digraph. The notion of strong junction tree is obtained by replacing (ii) in the definition of an RJT by “given an elimination ordering, if (Cu,Cv) is
an arc, there exists an ordering of Cv that respects the elimination ordering such that Cu ∩ Cv is before Cv\Cu in that ordering.”An RJT is a strong
junction tree. Conversely, a strong junction tree is not necessarily an RJT. Indeed, Jensen et al. (1994, figure 4) shows an example of strong junction
where there is v ∈ V such that fa(v) ⊊ Cv. Since strong junction trees is a notion on IDs and not on graphs, Theorem 2 has no natural gen-
eralization for strong junction trees.
7Although the particular RJT obtained by Algorithm 1 is a bucket tree, considering RJTs that are not bucket trees is also useful. Figure 10 shows
an application where it is interesting to use an RJT that is not a bucket tree.
8These graphs are called hypertrees in the probabilistic graphical model literature.
9Relevance graphs are introduced in Section 6.
10We remind the reader that Vr is the set of utility vertices as introduced in Section 1.1.
11 Indeed, the constraint μ ∈ 3(G,-, p,&) ensures that, for each v ∈ Va, μCv is a distribution. The constraint μCv � δv|pa(v) μČv ensures that if xpa(v)
has nonzero probability according to that distribution, that is,

∑
xČv\xpa(v)

μČv(xČv\xpa(v) , xpa(v)) > 0, then δv|pa(v)(·|xpa(v)) is a conditional probability.
12This type of property is well known in the literature on causality in graphical models, where the policies are viewed as interventions and some
conditional probabilities are shown to be invariant under interventions: see, for example, Koller and Friedman (2009, definition 21.3, p. 1019) or
Peters et al. (2017, remark 6.40, p. 113).
13 In fact, if the graph is soluble and if the decision nodes are ordered in reverse topological order for the relevance graph, then SPU converges
after exactly one pass over the nodes.
14When Nilsson and Höhle (2001) wrote their paper, the notion of soluble ID was still not known, and they used a weaker version. Their
terminology is also different.
15The number of constraints defining polytopes41 and4

b is
∑

v∈Vs |-Cv | + 3
∑

v∈Va |-Cv | +∑
(Cu ,Cv)∈! |-Cu∩Cv |, where |-Cv | � ∏

u∈Cv |-u| for all v inV.
If we use valid cuts, then the number of constraints of polytopes 4⊥⊥,1 and 4⊥⊥,b is 2

∑
v∈Vs |-Cv | + 4

∑
v∈Va |-Cv | +∑

(Cu ,Cv)∈! |-Cu∩Cv |.
16This follows from the characterization of soluble IDs in Appendix D and the fact that ϑαt−1 �⊥G†des at()|pa at() for all t ∈ [T].

References
Adelman D, Mersereau AJ (2008) Relaxations of weakly coupled stochastic dynamic programs. Oper. Res. 56(3):712–727.
Antonucci A, Zaffalon M (2008) Decision-theoretic specification of credal networks: A unified language for uncertain modeling with sets of

Bayesian networks. Internat. J. Approximate Reasoning 49(2):345–361.
Aras R, Dutech A (2010) An investigation into mathematical programming for finite horizon decentralized POMDPs. J. Artificial Intelligence Res.

37(1):329–396.
Bertsimas D, Mišić VV (2016) Decomposable Markov decision processes: A fluid optimization approach. Oper. Res. 64(6):1537–1555.
Bertsimas D, Niño-Mora J (2000) Restless bandits, linear programming relaxations, and a primal-dual index heuristic. Oper. Res. 48(1):80–90.
Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing. SIAM Rev. 59(1):65–98.
Cano A, Cano JE, Moral S (1994) Convex sets of probabilities propagation by simulated annealing. Globerson A, Silva R, eds. Proc. 5th Internat.

Conf. IPMU’94 (AUAI Press, Arlington, VA), 4–8.
Chandrasekaran V, Srebro N, Harsha P (2008) Complexity of inference in graphical models. Proc. 24th Conf. Uncertainty Artificial Intelli-

gence, 70–78.
Cohen V, Parmentier A (2019) Two generalizations of Markov blankets. Preprint, submitted March 8, https://arxiv.org/abs/1903.03538.
de Campos CP, Cozman FG (2007) Inference in credal networks through integer programming. Proc. 5th Internat. Sympos. Imprecise Probab.

Theories Appl., 145–154.
de Campos CP, Ji Q (2012) Strategy selection in influence diagrams using imprecise probabilities. Preprint, submitted June 13, https://arxiv.org/

abs/1206.3246.
De Farias DP, Van Roy B (2003) The linear programming approach to approximate dynamic programming. Oper. Res. 51(6):850–865.
Dechter R (2013)Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms (Morgan&Claypool Publishers, San Rafael, CA).
d’Epenoux F (1963) A probabilistic production and inventory problem. Management Sci. 10(1):98–108.
Dunning I, Huchette J, Lubin M (2017) JuMP: A modeling language for mathematical optimization. SIAM Rev. 59(2):295–320.
Eckles JE (1968) Optimum maintenance with incomplete information. Oper. Res. 16(5):1058–1067.
Hawkins JT (2003) A Lagrangian decomposition approach toweakly coupled dynamic optimization problems and its applications. Unpublished

doctoral dissertation, Massachusetts Institute of Technology, Cambridge.
Howard RA, Matheson JE (1984) Influence diagrams. Howard RA, Matheson JE, eds. Readings in the Principles and Practice of Decision Analysis

(Strategic Decision Systems, Menlo Park, CA), 719–762.
Howard RA, Matheson JE (2005) Influence diagrams. Decision Anal. 2(3):127–143.
Hurley B, O’Sullivan B, Allouche D, Katsirelos G, Schiex T, Zytnicki M, De Givry S (2016)Multi-language evaluation of exact solvers in graphical

model discrete optimization. Constraints 21(3):413–434.

Parmentier et al.: Integer Programming for Influence Diagrams
INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS 227

https://github.com/Victor2175/mathprog_influence_diagrams
https://arxiv.org/abs/1903.03538
https://arxiv.org/abs/1206.3246
https://arxiv.org/abs/1206.3246

Jensen F, Jensen FV, Dittmer SL (1994) From influence diagrams to junction trees. Proc. 10th Internat. Conf. Uncertainty Artificial Intelli-
gence, 367–373.

Kask K, Dechter R, Larrosa J, Dechter A (2005) Unifying tree decompositions for reasoning in graphical models. Artificial Intelligence
166(1):165–193.

Khaled A, Hansen EA, Yuan C (2013) Solving limited-memory influence diagrams using branch-and-bound search. Preprint, submitted
September 26, https://arxiv.org/abs/1309.6839.

Koller D, Friedman N (2009) Probabilistic Graphical Models: Principles and Techniques (MIT Press, Cambridge, MA).
Koller D, Milch B (2003) Multi-agent influence diagrams for representing and solving games. Games Econom. Behav. 45(1):181–221.
Lauritzen SL, Nilsson D (2001) Representing and solving decision problems with limited information. Management Sci. 47(9):1235–1251.
Lee J, Ihler AT, Dechter R (2018) Join graph decomposition bounds for influence diagrams. Globerson A, Silva R, eds. Proc. 34th Conf. Uncertainty

Artificial Intelligence (AUAI Press, Arlington, VA), 1053–1062.
Li Y, Yin B, Xi H (2011) Finding optimal memoryless policies of POMDPs under the expected average reward criterion. Eur. J. Oper. Res.

211(3):556–567.
Littman ML (1994a) Memoryless policies: Theoretical limitations and practical results. Cliff D, Husbands P, Meyer J-A, Wilson SW, eds. Conf.

Simulation Adaptive Behav.: From Animals to Animats 3 (MIT Press, Cambridge, MA), 238–245.
Littman ML (1994b) The witness algorithm: Solving partially observable Markov decision processes. Technical report.
Liu Q (2014) Reasoning and decisions in probabilistic graphical models–a unified framework. Unpublished doctoral dissertation, University of

California, Irvine.
Maua DD (2016) Equivalences between maximum a posteriori inference in Bayesian networks and maximum expected utility computation in

influence diagrams. Internat. J. Approximate Reasoning 68:211–229.
Mauá DD, Cozman FG (2016) Fast local search methods for solving limited memory influence diagrams. Internat. J. Approx. Reason. 68:230–245.
Mauá DD, de Campos C (2011) Solving decision problems with limited information. Adv. Neural Inform. Processing Systems 24:603–611.
Mauá DD, de Campos CP, ZaffalonM (2012a) The complexity of approximately solving influence diagrams. Globerson A, Silva R, eds. Proc. 28th

Conf. Uncertainty Artificial Intelligence (AUAI Press, Arlington, VA), 604–613.
Mauá DD, de Campos CP, Zaffalon M (2012b) Solving limited memory influence diagrams. J. Artificial Intelligence Res. 44:97–140.
Mauá DD, De Campos CP, Zaffalon M (2013) On the complexity of solving polytree-shaped limited memory influence diagrams with binary

variables. Artificial Intelligence 205:30–38.
McCormick GP (1976) Computability of global solutions to factorable nonconvex programs: Part I – convex underestimating problems. Math.

Programming 10(1):147–175.
Nilsson D, Höhle M (2001) Computing bounds on expected utilities for optimal policies based on limited information. Technical report, Danish

Informatics Network in the Agriculture Sciences.
Papadimitriou CH, Tsitsiklis JN (1987) The complexity of Markov decision processes. Math. Oper. Res. 12(3):441–450.
Peters J, Janzing D, Schölkopf B (2017) Elements of Causal Inference: Foundations and Learning Algorithms (MIT Press, Cambridge, MA).
Poh KL, Horvitz E (1996) A Graph-Theoretic Analysis of Information Value (UAI) (Morgan Kaufman Publishers, San Francisco).
Powell WB (2014) Clearing the jungle of stochastic optimization. Newman A, Leung J, eds. Bridging Data and Decisions (NFORMS, Catonsville,

MD), 109–137.
Robertson N, Seymour PD (1983) Graph minors. I. Excluding a forest. J. Combin. Theory Ser. B 35(1):39–61.
Ross S, Pineau J, Paquet S, Chaib-draa B (2008) Online planning algorithms for POMDPs. J. Artificial Intelligence Res. 32(1):663–704.
Scheffler P (1990) A linear algorithm for the pathwidth of trees. Topics in Combinatorics and Graph Theory (Springer), 613–620.
Schrijver A (2003) Combinatorial Optimization: Polyhedra and Efficiency (Springer, Berlin).
Shachter RD (1986) Evaluating influence diagrams. Oper. Res. 34(6):871–882.
Shani G, Pineau J, Kaplow R (2013) A survey of point-based POMDP solvers. Autonomous Agents Multi-Agent Systems 27(1):1–51.
Shenoy PP (1992) Valuation-based systems for Bayesian decision analysis. Oper. Res. 40(3):463–484.
Smallwood RD, Sondik EJ (1973) The optimal control of partially observable Markov processes over a finite horizon.Oper. Res. 21(5):1071–1088.
Sontag D, Globerson A, Jaakkola T (2011) Introduction to dual decomposition for inference. Optimization for Machine Learning, 219–254.
Wainwright MJ, Jordan MI (2008) Graphical models, exponential families, and variational inference. Foundations Trends Machine Learn.

1(1–2):1–305.
Yuan C, Wu X, Hansen E (2010) Solving multistage influence diagrams using branch-and-bound search. Globerson A, Silva R, eds. Proc. 26th

Conf. Uncertainty Artificial Intelligence (AUAI Press, Arlington, VA), 691–700.

Parmentier et al.: Integer Programming for Influence Diagrams
228 INFORMS Journal on Optimization, 2020, vol. 2, no. 3, pp. 209–228, © 2020 INFORMS

https://arxiv.org/abs/1309.6839

